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POST-CRITICAL BE~AYIOUR OF A LO~GIT~~I~ALLY COMPRESSES ROD FOR 
RIGID L~~~TATr~S ON TtiE DEFLECTION* 

E.I. MIKBAILOVSKII, V.N. TARASOV and D.V. KBOLMOGOROV 

An approach based on the application of optimization methods is developed 
for determining the state of stress and strain of bodies and structures 
with given limitation on the displacement. A model problem of plane 
longitudinal bending of a hinge-supported rod is considered with rigid 
limitations on the deflection. An analytic solution is obtained for this 
problem that extends a well-known solution tothenon-linear case /l/. 
Then, by applyiny the Ritz method to a variational problem and replacing 
the continuous by discrete limitations, the variational problem is trans- 
formed into a non-linear programming problem. The results of numerical 
computations are in good agreement with the analytical solution. A simple 
proof is given for the complete adjacency hypothesis used to obtain the 
latter. The mechanism of the formation of the multiwave bending mode as 
the axial compressive force increases, described in /l/, is confirmed 
by a numerical experiment. 

The problem under consideration is interesting in connection with 
the need to reveal the stable dynamic bending modes of drilling tube 
columns in a borehole. One of the methods of solving this problem is 
based on assumptions about the nature of adjacency of the column to the 
borehole wall or about the column bending mode. An investigation of the 
shape of a cambered axis using assumptions of complete adjacency is made 
in /2/. 

We consider the plane bending of a longitudinally compressed rod located initially along 
the axis of a cylindrical cavity (the radius is A =Z con&) with absolutely rigid walls. Let 
the hinge-clamped ends of the rod remain on the cavity axis during deformation while the 
longitudinal compressive force P retains its magnitude and direction. Under such assumptions, 
the determination of the plane bending mode of the rod reduces to solving the following 
variational problem 

where w, w' and UI* are the deflection function, and its first and second derivatives with 

respect to s, EI is the rod bending stiffness, and 1 is the rod length. 
Furthermore, we assume the force P to be greater than the first critica?. force (P> P*(r)= 

~2~~/~*) and greater than the force for which the rod would touch the wall. We assume here 

that the rod abuts completely on a cavity wall at a certain middle part of length I, - E-221, 
(Fig.1). We call this assumption the hypothesis of total adjacent:?. When there is a section 

of total rectification,the determination of the deflection at each of the curvilinear sections 
(from the hinged end to the first point of tangency) reduces to solving the variational problem 

under the boundary conditions 

w (0) = w” (0) = 0, w (Z1) = A, LL.' (II) = 0 
(3) 
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The necessary condition for a minimum of (2) in 1, under the boundary conditions (3) 

has the form 
w" (E,) = 6 (4) 

If &'*<<1, then the variational problem corresponding to (Z)-(4) has the following 
solution 

70 (s)= f sinks -+-+, h+=-& (5) 

Substituting solution (5) into relationship (4) and setting 1, = 112 we obtain p = 
4fl~EIl12. This means that (by linear theory) when 

p*c@ < P <Pp*@), Pet21 = ~n*Er~l~ (6) 

the rod can touch the wall at not more than one point and adjacency of the rod to the cavity 
wall will occur only when P> P,(*). 

Let us investigate the solution of problem (2), (3). The first 
integral of the Euler equation for functional (2) has the form 

Taking into account that w' = sin 6 (6 is the slope of the tangent 
to the rod axis), the first integral of (7) can be written thus: 

'i&P = A Eos (6 + 6) f C (81 
A = ]'m+ sin 6 = -r/.4, 

cos fi == k*iA 

Because of conditions (3), 0’ (I))= 0, consequently, C = A cos 
(6, + 6) and (8) reduces to the form 

IP 

Fig.1 (91 

where it is taken into account that 6(1,)= 0, W(I,) = 0 (see (3) and (4)). Furthermore‘making 
the Euler substitution 

eJ-6 00 -L fl sin A =L: - sin / sin 7$ (10) 
2 2 

and taking account of the condition q0 = 9 (0)= --x/2,$, =li)(Z,)= x12, resulting from (lo), we 
obtain 

ks= CC&I 2 [F(m, q:) + K (m)]; m2 = sin* -$ ill) 

(F(m, +) is the elliptic integral of the first kind, K (m) = F(m, n/2)). 
In particular, we obtain from (11) a formula for the length of the curvilinear section 

Taking the notation of (10) into account, we find 

kw($)= k i sin 6 ds=cos'/* %[sin + [ZE(m)- K(m)]+ (13) 

sin-$[2L(m, *)---F(m, J‘)]+Zcos+sin$cosQ] 

@ (mr 9) is the elliptic integral of the second kind, E (mm) = E (m, d2h 
The following fundamental equation of the problem results from (13) 

kA (0,) = 2 cod/r + sin % [2E (m) - Ii (m)] (14) 

We show in Fig.2 a graph of the function kA(6,) from which it is seen that two assumed 
equilibrium modes correspond to each value of the criterion parameter kA = A~~ while 
kA < max kA (6,)~ 1.66, Bog IO, nl. A graph of the function kE, @I,,) is also represented there. 

Using 2' = cos e as the initial relationship and carrying out calculations analogous 
to those made in deriving (13), we obtain 
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Fig.2 

Fig.4 

Fig.3 

I 2 h.? 

Fig.5 

kz (9) = cos’i~ -$ {co&- 1% (M) - K &)I + 

cos+[[2E(m, I+)--P(m, ~P)]+?sin+sin+-Ces$j 

Setting II, = ni2 in (15) and taking into account (14), we arrive at the relationship 
(2, = 2 (x/2)) 

(15) 

A = zI tg fedz) t16) 

which means that the beginning of the lining section is at the intersection of the bisector 
of the angle go with the boundary wall (see Figs.1 and 3). 

The necessary conditions for the deflection mode with a lining to exist are written as 
follows: 

kl> n or P> P,(l) is the condition for the possibility of a non-rectilinear equilib- 
rim mode to exist for a rod of length 1; 

<:kl,> 0 is the condition for tne lining section to exist: 

kEl < 2n is the stability condition for the ILining section 

(kl, me kE - 4K cos"+,/2) 
It hence follows that tangency is possible for 

It is seen that as e,, increases the value of P corresponding to the beginning of the 
lining is reduced from P = P*@) (for 0,<1) to P = P,(l) (for BO=1560). 

Remark, As in /l/, the assumption was made above about the presence of a lining section 
(the hypothesis of total adjacency). We will give a proof of the existence of such a section. 
Let the rod have the equilibrium mode shown in Fig.4. At the sites of contact with the wall 
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the rod cannot have lining sections. Otherwise, the problem for the middle section would turn 
out to be overdefined: at the end of the rod it would be necessary to satisfy three conditions 

u) = w' = & = 0. Ne select an imaginary middle section of the rod and we connect the outer 

sections into one rod. We then obtain a cambered equilibrium mode for a hinge-supported rod 

of length 21,. This equilibrium mode can hold only for 2&>n. The middle section is the 
cambered equilibrium mode of a rod of length 1, clamped rigidly at the ends. Such an 

equilibrium mode is possible for kl, > 2x. We hence obtain 

k (22, + Zr) 3 kZ> 3n 

Therefore, the equilibrium mode under consideration is possible only for p>P,@). This 
means that for any e0 between the second and third critical forces of a rod of length Z(P,(?)< 
P < P,(a)) only one equilibrium mode is possible for the middle section,namely lining. 

Example . Let l=im, EI= 10-a kN.m2, A = 0,1t m. Then we have kA = A1/Pl(EI) = 1.38 for 

p = P.(C) = 0.158 kN. 8 From the graph in Fig.2 we find (6,), = 60°, (6,), = 132'. Corresponding to 
these values of B. are (kl,), = 2.97 and (kl,), = 2.18 or (11)1 = 0.174 m and (1~)~ = 0.236 m. The 
lengths of the corresponding lining sections are (2,),=0.652 m and (l.Jn = 0.528 m (Fig. 3) . 

Numerical solution of problem (1). The hinge-support boundary conditions will be 
satisfied if the deflection function is sought in the form 

w(s) =w(z.s) _I snlE.- 1 6(s---Is) 

,.-I 

8 n’l: 1 ” ( ) 
3 c zi+l (+p (i _ +T” (18) 
i=o 

(Note that in the numerical solution of problem (1) the deflection function was initially 
sought in the formofa partial sum of a trigonometric series in the eigenfunctions of the 

linear problem of longitudinal bending w((s)=~{~~z~ shins/z. In such an approximation of the 

deflection function the bending mode with a lining section turned out to be unstable in 
calculational respects, which indeed necessitated consideration of a polynomial representation 
of the desired function.) 

Substituting w (s) defined by (18) into the functional (l), we obtain 

i (2) E SL [u~'(z;s), 10~)" (.r;s)]ds + rnj (19) 
0 

h (z; S) G 1 w (I; s) 1 - A d 0 

Replacing the continuous constraint in (19) by a set of discrete constraints, we arrive 
at the following non-linear programming problem 

f(z) + min 
XC.0 

R = (z E E, 1 h* (z) I< 0, j E 0 : A’,) 
hj (z) = h (z; Sj), sj =: jZiX,: 

(20) 

The function f(=) and its gradient were evaluated by a Gauss quadrature formula with 
32 nodes. Problem (20) was solved by the method of E-steepest descent /3/ for n=i5,N,=50. 
A feature of the bending mode found by using non-linear programming is the stand-off of the 
rod from the wall in that part where the lining section should theoretically be. However, 
as the accuracy of the solution of the non-linear programming problem increases (which is 
equivalent to an increase in computing time) a tendency to rectification of the middle section 
is observed. Therefore, the numerical solution is also in agreement with the total adjacency 
hypothesis. 

Graphs of the deflection function are presented in Fig.5 for p= 0.97 p.(3) and k = 9.29 m-l 
for different values of A. The solid line with the dark point is the analytical solution, 
the dash-dot curve is the solution in /l/. Comparing these solutions we arrive at the 
deduction that on being vien a 5% error, linear theory can be used in calculations for Allg 
0.06. 

The evolution of deflection was also investigated as the load increased. It is disclosed 
that a change in the equilibrium mode occurs for a force greater than p,(4) in the form of a 
half-wave in a mode with three half-waves. Therefore, a numerical experiment has confirmed 
the mechanism of multiwave bending mode formation as the axial compressive force increases, 
as described in /l/. 
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EVOLUTION OF A WEAK SIGNAL IN A HAGNETIC MATERIAL* 

The variation of a weak arbitrary perturbation of the magnetic field with 
time in a magnetic material is investigated. It is assumed that the 
cubic relation connecting the strength H of the magnetic field with its 
induction B holds for the material in question. Such a relationship 
represents a special case of the relation between these quantities for the 
initial magnetization of the majority of magnetic materials /l/. It is 
shown that after a certain finite time the signal degenerates into a 
simple wave and a closing trailing shock. The profile area remains 
constant and equal to the area of the initial signal. 

G.L. SEDOVA 

The formation of shock waves at the front and the slope of the electromagnetic waves 
was studied earlier in /2, 3/ for a magnet magnetized to saturation, and for the case of 
precession of the constant magnetization vector. 

Let a weak signal B(x,t,), be generated in the magnetic material at the instant t,, moving 
over zero background in the positive direction of the x axis (Fig.1). We shall consider the 
variation in the given profile with time for the case when the relation connecting H-and B 
has the form 

H = o0 (B t B*) - y (B - B,Y (1) 

Here =,,y are certain constants and n,> ;'Bo'; B, is the value of the magnetic induction 
for which dZH/dBz= 0; B* is chosen so that when B= 0, H is also zero. 

The evolution of a weak signal in a magnetic material was investigated in /4/ for the 
case of a quadratic dependence of H on B. 

When the relation H(B) is given, the velocity of small perturbations u = cV-~~ is nearly 
equal to the velocity of the resulting discontinuities /5/ 

cp = e (a0 + ;' [(B - B,)* - (B - B,) (8, - B,) -- (B, - B0)2])"z 

Therefore the perturbations reflected from the discontinuity can be neglected and the 
initially specified signal will propagate in one direction (e.g. to the right) in the form 
of a simple wave, with the signal area preserved. 

X^ 

Since the rate of propagation of simple waves a= ~l;dNidB depends on B, different points 
of the profile will move through the magnetic material with different velocities, and this 
will lead to signal distortion, non-uniqueness of the solution, and the formation of discon- 

tinuities. 
When the signal profile is deformed, the area S, corresponding to the extension of the 

shock zone will be equal to the area s1 which would be traversed over the same time by a 
simple wave in the case of non-uniqueness. Indeed, 

s, = u(B - B,) = e ($+'(B-B,)= 

ao(B- B,) A yfB-BB,)a-y(R-B,)3 "1 
c B-B, -1 (1; -U,) ” 

?= cu’5 7 ’ (B - I.&)3 - (E, - Bo)” z 0 T 2.q L 
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